Simulation of Heat Transport in Low-Dimensional Oscillator Lattices

نویسندگان

  • Lei Wang
  • Nianbei Li
  • Peter Hänggi
چکیده

The study of heat transport in low-dimensional oscillator lattices presents a formidable challenge. Theoretical efforts have been made trying to reveal the underlying mechanism of diversified heat transport behaviors. In lack of a unified rigorous treatment, approximate theories often may embody controversial predictions. It is therefore of ultimate importance that one can rely on numerical simulations in the investigation of heat transfer processes in low-dimensional lattices. The simulation of heat transport using the non-equilibrium heat bath method and the Green-Kubo method will be introduced. It is found that one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) momentum-conserving nonlinear lattices display power-law divergent, logarithmic divergent and constant thermal conductivities, respectively. Next, a novel diffusion method is also introduced. The heat diffusion theory connects the energy diffusion and heat conduction in a straightforward manner. This enables one to use the diffusion method to investigate the objective of heat transport. In addition, it contains fundamental information about the heat transport process which cannot readily be gathered otherwise. L. Wang ( ) Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, People’s Republic of China e-mail: [email protected] N. Li Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People’s Republic of China e-mail: [email protected] P. Hänggi Institute of Physics, University of Augsburg, Augsburg 86135, Germany e-mail: [email protected] © Springer International Publishing Switzerland 2016 S. Lepri (ed.), Thermal Transport in Low Dimensions, Lecture Notes in Physics 921, DOI 10.1007/978-3-319-29261-8_6 239

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell

In this article three dimensional modeling of a planar solid oxide fuel cell (SOFC) was investigated. The main objective was to attain the optimized cell operation. SOFC operation simulation involves a large number of parameters,   complicated equations, (mostly partial differential equations), and a sophisticated simulation technique; hence, a finite element method (FEM) multiphysics approach ...

متن کامل

Temperature dependence of thermal conductivity in 1D nonlinear lattices

We examine the temperature dependence of thermal conductivity of one dimensional nonlinear (anharmonic) lattices with and without on-site potential. It is found from computer simulation that the heat conductivity depends on temperature via the strength of nonlinearity. Based on this correlation, we make a conjecture in the effective phonon theory that the meanfree-path of the effective phonon i...

متن کامل

Heat conduction in low-dimensional quantum magnets

Transport properties provide important information about the mobility, elastic and inelastic of scattering of excitations in solids. Heat transport is well understood for phonons and electrons, but little is known about heat transport by magnetic excitations. Very recently, large and unusual magnetic heat conductivities were discovered in low-dimensional quantum magnets. This article summarizes...

متن کامل

Memory Effects and Heat Transport in One-dimensional Insulators

We study the dynamical correlation functions and heat conduction for the simplest model of quasi one-dimensional (1d) dielectric crystal i.e. a chain of classical particles coupled by quadratic and cubic intersite potential. Even in the weakly nonlinear regime, numerical simulation on long enough chains reveal sizeable deviations from the perturbative results in the form of a slower decay of co...

متن کامل

Development of Semi-Tow-Dimensional SDAR Model for Bed Variation Simulation in Alluvial Rivers

In this paper, development of a semi-two- dimensional mathematical model called SDAR is introduced. The model is composed of two principal modules of hydraulics and sediment transport. The newly developed SDAR model has a number of capabilities including determination of sediment transport rate, aggradation - degradation calculation, longitudinal profile and lateral cross–sectional variation s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016